Search results for "Sierpinski triangle"

showing 4 items of 4 documents

Geometry and analysis of Dirichlet forms

2012

Let $ \mathscr E $ be a regular, strongly local Dirichlet form on $L^2(X, m)$ and $d$ the associated intrinsic distance. Assume that the topology induced by $d$ coincides with the original topology on $ X$, and that $X$ is compact, satisfies a doubling property and supports a weak $(1, 2)$-Poincar\'e inequality. We first discuss the (non-)coincidence of the intrinsic length structure and the gradient structure. Under the further assumption that the Ricci curvature of $X$ is bounded from below in the sense of Lott-Sturm-Villani, the following are shown to be equivalent: (i) the heat flow of $\mathscr E$ gives the unique gradient flow of $\mathscr U_\infty$, (ii) $\mathscr E$ satisfies the Ne…

Mathematics(all)General MathematicsPoincaré inequalityMetric measure space01 natural sciencesMeasure (mathematics)Length structuresymbols.namesakeMathematics - Metric GeometrySierpinski gasketGradient flowClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsRicci curvatureHeat kernelMathematicsDirichlet formProbability (math.PR)010102 general mathematicsMathematical analysista111Differential structureMetric Geometry (math.MG)Functional Analysis (math.FA)Sierpinski triangleMathematics - Functional Analysis010101 applied mathematicsRicci curvatureMathematics - Classical Analysis and ODEsPoincaré inequalityBounded functionsymbolsBalanced flowDirichlet formIntrinsic distanceMathematics - ProbabilityAdvances in Mathematics
researchProduct

Inhomogeneity and complexity measures for spatial patterns

2002

In this work, we examine two different measures for inhomogeneity and complexity that are derived from non-extensive considerations à la Tsallis. Their performance is then tested on theoretically generated patterns. All measures are found to exhibit a most sensitive behaviour for Sierpinski carpets. The procedures here introduced provide us with new, powerful Tsallis’ tools for analysing the inhomogeneity and complexity of spatial patterns.

Statistics and ProbabilityStatistical Mechanics (cond-mat.stat-mech)Computer scienceFOS: Physical sciencesFísicaComplexityCondensed Matter PhysicsNon-extensive statisticsSierpinski triangleSpatial patternsSpatial ecologyStatistical physicsCondensed Matter - Statistical MechanicsCiencias ExactasPhysica A: Statistical Mechanics and its Applications
researchProduct

Detecting self-similarity in surface microstructures

2000

The relative configurational entropy per cell as a function of length scale is a sensitive detector of spatial self-similarity. For Sierpinski carpets the equally separated peaks of the above function appear at the length scales that depend on the kind of the carpet. These peaks point to the presence of self-similarity even for randomly perturbed initial fractal sets. This is also demonstrated for the model population of particles diffusing over the surface considered by Van Siclen, Phys. Rev. E 56 (1997) 5211. These results allow the subtle self-similarity traces to be explored.

Surface (mathematics)Length scalePhysicsCondensed Matter - Materials Scienceeducation.field_of_studySelf-similarityStatistical Mechanics (cond-mat.stat-mech)PopulationConfiguration entropyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesSurfaces and InterfacesFunction (mathematics)Condensed Matter PhysicsSurfaces Coatings and FilmsSierpinski triangleMaterials ChemistryPoint (geometry)Statistical physicseducationCondensed Matter - Statistical Mechanics
researchProduct

Entropic measure of spatial disorder for systems of finite-sized objects

2000

We consider the relative configurational entropy per cell S_Delta as a measure of the degree of spatial disorder for systems of finite-sized objects. It is highly sensitive to deviations from the most spatially ordered reference configuration of the objects. When applied to a given binary image it provides the quantitatively correct results in comparison to its point object version. On examples of simple cluster configurations, two-dimensional Sierpinski carpets and population of interacting particles, the behaviour of S_Delta is compared with the normalized information entropy H' introduced by Van Siclen [Phys. Rev. E 56, (1997) 5211]. For the latter example, the additional middle-scale fe…

Statistics and ProbabilityPhysicseducation.field_of_studyStatistical Mechanics (cond-mat.stat-mech)Degree (graph theory)Binary imageConfiguration entropyPopulationFOS: Physical sciencesCondensed Matter PhysicsMeasure (mathematics)Sierpinski triangleThermodynamic limitCluster (physics)Statistical physicseducationCondensed Matter - Statistical MechanicsPhysica A: Statistical Mechanics and its Applications
researchProduct