Search results for "Sierpinski triangle"
showing 4 items of 4 documents
Geometry and analysis of Dirichlet forms
2012
Let $ \mathscr E $ be a regular, strongly local Dirichlet form on $L^2(X, m)$ and $d$ the associated intrinsic distance. Assume that the topology induced by $d$ coincides with the original topology on $ X$, and that $X$ is compact, satisfies a doubling property and supports a weak $(1, 2)$-Poincar\'e inequality. We first discuss the (non-)coincidence of the intrinsic length structure and the gradient structure. Under the further assumption that the Ricci curvature of $X$ is bounded from below in the sense of Lott-Sturm-Villani, the following are shown to be equivalent: (i) the heat flow of $\mathscr E$ gives the unique gradient flow of $\mathscr U_\infty$, (ii) $\mathscr E$ satisfies the Ne…
Inhomogeneity and complexity measures for spatial patterns
2002
In this work, we examine two different measures for inhomogeneity and complexity that are derived from non-extensive considerations à la Tsallis. Their performance is then tested on theoretically generated patterns. All measures are found to exhibit a most sensitive behaviour for Sierpinski carpets. The procedures here introduced provide us with new, powerful Tsallis’ tools for analysing the inhomogeneity and complexity of spatial patterns.
Detecting self-similarity in surface microstructures
2000
The relative configurational entropy per cell as a function of length scale is a sensitive detector of spatial self-similarity. For Sierpinski carpets the equally separated peaks of the above function appear at the length scales that depend on the kind of the carpet. These peaks point to the presence of self-similarity even for randomly perturbed initial fractal sets. This is also demonstrated for the model population of particles diffusing over the surface considered by Van Siclen, Phys. Rev. E 56 (1997) 5211. These results allow the subtle self-similarity traces to be explored.
Entropic measure of spatial disorder for systems of finite-sized objects
2000
We consider the relative configurational entropy per cell S_Delta as a measure of the degree of spatial disorder for systems of finite-sized objects. It is highly sensitive to deviations from the most spatially ordered reference configuration of the objects. When applied to a given binary image it provides the quantitatively correct results in comparison to its point object version. On examples of simple cluster configurations, two-dimensional Sierpinski carpets and population of interacting particles, the behaviour of S_Delta is compared with the normalized information entropy H' introduced by Van Siclen [Phys. Rev. E 56, (1997) 5211]. For the latter example, the additional middle-scale fe…